Multireactional Multiconformational Vinyl Ethyl Ether + OH Reaction Theoretical Study.
Atmospheric Chemistry, Combustion Chemestry, EVE + OH, C 4 H 8 O, chemical kinetics.
Aliphatic ethers have been indicated as a possibility as fuels addictive, with potential to reformulate the energetic matrix. This molecule family has relevancy as much in Atmospheric Chemistry as Combustion Chemistry, and learn its reactivity is important to elucidate its behavior and modulate a precise reactional mechanism. The combustion
mechanism starts by unimolecular and bimolecular reactions with OH radicals, following a hydrogen abstraction mechanism. In a similar way, at an atmospheric system, OH radicals are the mainly precursors of these ethers oxidate processes, by hydrogen abstraction mechanisms. This study, as a continuation of previous works, has focus on elucidate the EVE + OH reaction on purpose to observe the interaction of these radicals with more complex structure of the previous studied ether, now with the possibility of addiction channels besides hydrogen abstraction channels. The theoretical calculations have been realized with M06-2x level and aug-cc-pVTZ basis utilizing ORCA software. In comparison with the literature, this work brings a more detailed approach to the theoretical study. By a conformational analysis together with a Boltzmann’s distribution, 4 conformations have been confirmed relevant to the reaction mechanism, its respective intermediates geometries and its correspondents saddle points, that shown similarities of
extreme importance to the prediction of the reaction mechanism. Its connectivity was confirmed by Intrinsic Reaction Coordinate (IRC) and Scan calculations. Those calculations allowed the proposal of new reaction channels, showing multiple possibilities, setting then a multiconformational multireactional study.